Introduction

The ELENCO F-2875 is the latest advance in hand-held radio frequency finder / counter. It excels at finding frequencies for secure monitoring applications. It automatically and instantly tunes ICOM CI-V or AOR receivers to the frequency it finds. It is compact, truly pocket-sized and is designed for ease of use and reliable performance. It comes complete with internal NiCd pack, AC wall charger, 7 section telescopic antenna and interface cable.

Specifications

- Frequency range: 1 MHz - 3 GHz
- Weight: 250 g
- Size: 100 mm high x 68 mm wide x 31 mm deep
- Impedance: 50 Ohms (BNC Socket)
- Case: Stamped aluminum with black anodized finish
- Battery: Internal 4 x AA 600 mA NiCd pack
- Power: 9 VDC 300 mA
- Timebase: Less than 1 PPM at room temperature

Features

- 10 digit Liquid Crystal Display
- Low power consumption (Average 5 hour battery life)
- LED back light
- Supplied with NiCd pack, AC wall charger, telescopic antenna and interface cable
- Measures frequency and period
- Automatically holds and tunes ICOM CI-V or AOR receivers
- Filter prevents display of random noise
- Hold switch to lock display
- Low battery indicator
- Beeper
- 4 selectable gate speeds
- Ultra sensitive synchronous detector 16 section bargraph to show RF signal strength
- High speed 300 MHz direct counter with 0.1 Hz resolution

Controls

1. Power Switch. This slide switch turns the RF finder on which also initiates a 2 second test of all the LCD segments.
2. Com Switch. This slide switch selects either the ICOM CI-V receivers or the AOR receivers.
3. Range Switch. This should be switched to the 300 MHz position for frequencies between 1 MHz and 300 MHz and switched to the 3 GHz position for frequencies between 10 MHz and 3 GHz.
4. Lite Switch. This slide switch turns the LCD back light on and off.
5. Filter Switch. Slide the switch to turn the filter on and off.
6. Function Button. This selects the frequency or period. This button has four settings. One each for displaying frequency or period as these are received, and two settings for automatic hold and tune of the first frequency or period found.
7. Hold Button. This holds the current display and stops the RF finder from counting.
8. Gate Button. This selects the gate or measurement time. A longer gate time allows counting for longer period and results in higher accuracy.
9. Calibration. The calibration adjustment opening is located on the front panel of the RF finder. This allows access to the trimmer capacitor that provides about a 10 PPM adjustment range of the time base oscillator. This is not usually necessary but to do so read a signal of a known frequency before adjusting the trimmer for correct frequency display. If you calibrate at 4.1943 MHz or above then the RF finder will be more accurate.
Warranty

ELENCO ELECTRONICS, INC. guarantees the RF finder and its accessories for one year against defects in manufacture. This warranty does not cover items that have been modified, subject to unauthorized repairs, misuse or abuse. This warranty does not cover damage caused by excessive power levels applied to the signal input. Never make any kind of connection between the RF finder and a transmitter.

Hints and Tips

1. NiCd Operation

This RF finder can operate for up to six hours from its fully charged NiCd batteries. They are charged when the unit is plugged into the supplied AC/DC adapter. Full recharge will occur over 12 to 16 hours. Before recharging the batteries you should be deep cycled occasionally by allowing them to completely discharge to maintain maximum battery capacity. The NiCd batteries should last for several years. However, it is a good idea to check them every twelve months for signs of corrosion or leakage. Always replace the whole set if any one cell fails.

2. Signal Input

When using the RF finder with an antenna for signal pick up, random frequencies may appear on the display. This is quite normal and is caused by the high gain of the receiver circuits, which amplify noise in the absence of a strong readable signal. Never get the unit too close to a transmitter as internal damage will result.

3. Antenna Selection

The supplied telescopic antenna is best for general purpose use. This is because its length can be adjusted to suit the frequency required. Usually you will want a shorter antenna for UHF and a fully extended one for VHF / HF.

4. Reception Distance From Transmitter

The distance from which you will be able to receive frequencies will depend upon the type and location of the transmitting antenna, transmitter output power and the frequency in use. Some typical distances are:

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordless Phone</td>
<td>0.6 meters</td>
</tr>
<tr>
<td>Cellular Phone</td>
<td>6 - 20 m</td>
</tr>
<tr>
<td>CB radio</td>
<td>4 - 8 m</td>
</tr>
<tr>
<td>VHF Two Way Radio</td>
<td>6 - 30 m</td>
</tr>
<tr>
<td>UHF Two Way Radio</td>
<td>6 - 30 m</td>
</tr>
</tbody>
</table>

Input Sensitivity (Typical)

- Amplifier: 50 Ohm
- Impedance: 50 Ohm VSWR less than 2:1
- Range: 1 MHz - 3 GHz
- Sensitivity: less than 2 mV at 100 MHz - 1.2 GHz
- Max. input: 15 dBm

RF Signal Strength BarGraph

<table>
<thead>
<tr>
<th>Frequency</th>
<th>1st Segment</th>
<th>Full Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 MHz</td>
<td>7 mV</td>
<td>100 mV</td>
</tr>
<tr>
<td>150 MHz</td>
<td>5 mV</td>
<td>90 mV</td>
</tr>
<tr>
<td>800 MHz</td>
<td>10 mV</td>
<td>200 mV</td>
</tr>
</tbody>
</table>

Frequency Display Resolution

<table>
<thead>
<tr>
<th>Range</th>
<th>Gate Time (Seconds)</th>
<th>LSD</th>
<th>Sample Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 MHz</td>
<td>0.0625</td>
<td>10 Hz</td>
<td>300.000000 MHz</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1 Hz</td>
<td>300.000000 MHz</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1 Hz</td>
<td>300.000000 MHz</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.1 Hz</td>
<td>300.000000 MHz</td>
</tr>
<tr>
<td>3 GHz</td>
<td>0.0625</td>
<td>1000 Hz</td>
<td>3000.000 MHz</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>100 Hz</td>
<td>3000.000 MHz</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>10 Hz</td>
<td>3000.000000 MHz</td>
</tr>
</tbody>
</table>