THE 8901A and the CAMAC STANDARD

The Model 8901A is a CAMAC module which provides GPIB access to a CAMAC mainframe.

CAMAC is an international standard for modularized instrumentation as defined by the ESONE Committee and the IEEE (Standard 583). Its function is to provide a means by which a wide range of modular instruments can be powered in a multi-receptacle crate and interfaced to a computer. The LeCroy Model 8901A CAMAC to GPIB (IEEE 488) interface allows the CAMAC system configuration to be used with GPIB computer controllers.

Simple program instructions via the GPIB to registers in the Model 8901A select an individual instrument module within the CAMAC mainframe, select any subaddress within that module, and establish the function (read, write, control). This allows the user to handle the entire CAMAC mainframe of up to 23 individual instrument modules in the same manner as any ordinary single device connected to the IEEE-488 bus. It is possible to interconnect up to 15 different CAMAC mainframes in this way.

The 8901A can be programmed to do a block transfer of all data within a CAMAC module to a GPIB Listener without additional intermediate commands. In this mode, the 8901A will alternately transfer one, two or three 8-bit bytes (as programmed) as fast as the Listener can accept them (at rates approaching 500 kilobytes/sec) and then initiate a new CAMAC acquisition cycle. Not all CAMAC modules, however, support Block Read readout.

The Model 8901A is a direct replacement for both the LeCroy Model 8901 and 8901/100 (Mod 100). In addition to all of the 8901-8901/100 features, the "A" version includes the generation of the GPIB EOI signal at the end of valid data, a jumper to select the order in which data bytes are sent to the GPIB controller, and a "slow" block mode transfer for instruments that cannot be read out at full CAMAC speed.

UPGRADE NOTES

The Model 8901A is a direct replacement for both the LeCroy Model 8901 and 8901/100 (Mod 100). In addition to all of the 8901-8901/100 features, the "A" version includes the generation of the GPIB EOI signal at the end of valid data, a jumper to select the order in which data bytes are sent to the GPIB controller, and a "slow" block mode transfer for instruments that cannot be read out at full CAMAC speed.

SPECIFICATIONS

Internal Registers and Byte Descriptions

Registers in the 8901A Interface are sequentially loaded with data after it has been commanded to enter the LISTEN mode by the GPIB System Controller. These registers store all the information necessary (F, A, N, W, C, Z, I) to generate standard CAMAC cycles (see Table 1).

The first byte received by the interface after it has entered the LISTEN mode contains either the CAMAC Function (F Code) or 8901A Setup information. The second and sequential bytes accept, respectively, the CAMAC subaddress (A Code), station number (N Code) and three bytes of data.

Once these registers have been loaded, the information will be retained until modified or power is turned off. The loading process can be terminated (and re-initialized) after any number of bytes have been transferred by issuing a TALK, LISTEN, Unlisten or IFC command. Again, note that the 8901A must be placed in LISTEN mode before it will receive any information.
CAMAC Cycle Execution

A CAMAC cycle is executed every time the 8901A is commanded to enter the TALK mode and a Service Request is not pending. At the completion of the CAMAC cycle a DAV (Data Valid) will be asserted. Every time a byte is accepted a new byte is made available. When no more data is available, the 8901A asserts End of Identity (EOI).

CLEAR, INITIALIZE and INHIBIT

The 8901A can be programmed to generate CLEAR (C), INITIALIZE (Z), or INHIBIT (I) signals on the dataway when a CAMAC cycle is executed. The C and Z registers are cleared after the completion of the next CAMAC cycle. The INHIBIT register will remain set until it is programmed off.

Block Transfer Mode

The 8901A can be programmed to do a high speed block transfer of 8-, 16-, or 24-bit words from CAMAC modules with read and increment capability. Following module addressing and the appropriate control byte, (see Operating Instructions) a TALK command will start the 8901A to read one, two, or three bytes of data and automatically initiate another CAMAC cycle. Approximately 2 μsec later (a programmable 40 μsec delay can be used for slow modules) new data is available to be read. CAMAC cycles will continue to be executed until a Q=0 (end of memory) condition causes the 8901A to stop executing CAMAC cycles and exit the transfer mode.

Service Requests (SRQ)

The 8901A can be programmed to operate in SRQ mode. In this mode, a Service Request will be issued after a specific condition occurs on the CAMAC dataway, involving the dataway LAM, Q and X lines.

Serial Poll

After issuing a service request, a Serial Poll must be performed. The 8901A will send the status of the individual LAM, X and Q lines, terminating the Service Request after the controller reads the status byte. Note: For a LAM-generated Service Request, the LAM must be cleared or disabled before the poll is taken, or else another service request will immediately be issued.

Front Panel LEDs

- **TALK**: indicates when 8901A is a GPIB Talker.
- **LISTEN**: indicates when 8901A is a GPIB Listener.
- **SRQ Enable**: indicates when 8901A is enabled to carry out Service Requests.
- **X Response**: indicates a valid command was accepted by the addressed module.
- **Q Response**: indicates a valid data transfer or valid test within the mainframe.

Table 1: Register Descriptions

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Register Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Contains Function code OR Setup Command</td>
</tr>
<tr>
<td>A</td>
<td>Module Subaddress</td>
</tr>
<tr>
<td>N</td>
<td>CAMAC station (slot) number</td>
</tr>
<tr>
<td>D1</td>
<td>Low data byte (bits W1-W8 on CAMAC Dataway)</td>
</tr>
<tr>
<td>D2</td>
<td>Middle data byte (bits W9-W16)</td>
</tr>
<tr>
<td>D3</td>
<td>High data byte (bits W17-W24)</td>
</tr>
</tbody>
</table>
GPIB Device Address Switch

Sets the GPIB Address of the 8901A. See Figure 1 on page 15.

General

The 8901A resides in the two slots furthest right in a CAMAC mainframe and generates all CAMAC dataway signals in response to commands from a GPIB controller. A standard GPIB connector on the front panel permits interconnection to any GPIB system. This allows any GPIB controller to program settings, read from or write to any standard CAMAC modules.

Packaging: is in conformance with CAMAC standard, RF-shielded 2 module.

Power Required: is 1.2 A at +6 V.

Look-at-Me: indicates when any CAMAC modules sets "LAM" line (often used to generate a Service Request).

INHIBIT: indicates when CAMAC dataway is inhibited. (Note: the INHIBIT LED turns on when the appropriate control byte is uploaded. A TALK must still be executed for before other modules can be inhibited.)
INTRODUCTION

The 8901A provides GPIB control of all instruments in a CAMAC mainframe by transferring data uploaded via GPIB to the CAMAC dataway, and by controlling the execution of CAMAC cycles.

Instrument Drivers and Example Source Code

Current versions of instrument drivers for the LabVIEW™ and LabWindows™ packages are available from the LeCroy WWW and FTP sites, as well as some sample source code and control programs. All 8901A sample software is not protected under the 8901A warranty.

Please also refer to the next chapter "Programming CAMAC Modules" for information on uploading and executing commands described in this section.

Command Types

The GPIB controller may send the 8901A two basic types of commands:

1. **8901A Setup Commands**: These commands program the 8901A, and do not involve the CAMAC dataway or other CAMAC modules.

2. **CAMAC Commands**: These commands are communicated through the CAMAC dataway for programming and operation of other instruments in the mainframe.

8901A SETUP COMMAND INFORMATION

There are two categories of Setup Commands:

- **Transfer Mode Commands**
- **SRQ (Service Request) Configuration Commands**

These are all single byte commands. Please see the section "Programming the 8901A and other CAMAC Modules" for programming instructions.

Transfer Mode Commands

By sending the appropriate command byte (see Table 3), the 8901A can be programmed to return 8, 16, or 24-bit data words in either single or block word transfers over the GPIB bus. In the case of multiple byte transfers, data is sent based on the Byte Order Jumper setting. When the byte order is set to NORMAL the least significant byte is sent first followed by the middle and high bytes.

In "normal" transfer modes (not to be confused with the NORMAL jumper setting mentioned above), the 1, 2, or 3 data bytes are followed by a status byte containing the X response (least significant bit) and the Q response (bit 2), along with the GPIB EOI status line, which is asserted to indicate end of the data transfer. When programmed for normal transfers, the 8901A will await further commands after data is transferred.

<table>
<thead>
<tr>
<th>Table 3 - Transfer Mode Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Normal Transfer</td>
</tr>
<tr>
<td>Block Read</td>
</tr>
<tr>
<td>High Speed</td>
</tr>
<tr>
<td>Block Read</td>
</tr>
<tr>
<td>8-bit read</td>
</tr>
<tr>
<td>16-bit read</td>
</tr>
<tr>
<td>24-bit read</td>
</tr>
</tbody>
</table>

Single byte commands - values specified in decimal with hex value given in ().
In block read modes, the 8901A will transfer a block of data. The 8901A will automatically initiate additional CAMAC cycles after downloading the current data word(s). CAMAC cycles will continue to be executed until the Q status line goes to 0, or until the GPIB controller terminates the transfer.

There are two basic types of block read modes in the 8901A. The first one, "normal block read" is provided for modules which cannot read out at full CAMAC speed (1 MHz). In this mode, a 35 µsec delay (plus GPIB overhead) is added between each CAMAC cycle to slow down the transfer rate. The other mode, "high speed block read" runs as fast as the data is read out over the GPIB, up to 2 µsec per cycle.

When block mode transfers are terminated by Q=0, two additional bytes are sent to the GPIB controller. A status byte with the X and Q data, followed by a zero byte and EOI.

Note: If the GPIB controller terminates the transfer before Q=0, one additional cycle will be executed and the data will be left in the 8901A's registers. To access this data, it is necessary to send the CAMAC command F(0) A(0) and N(24) (see next section), and then readout the data word. This is required since the 8901A is initiating the CAMAC cycles in block mode transfers.

At the end of each block transfer, the 8901A is reset to the corresponding normal transfer mode.

A service request (SRQ) is a mechanism by which a GPIB compatible instrument can communicate to a computer that a particular condition exists, without requiring the computer to readout any data. There are three conditions occurring on the CAMAC bus which can be employed to cause the Model 8901A to issue a service request to the GPIB controller:

1. When any individual LAM line is set
2. When Q is set
3. When X is set

Table 4 lists the commands to send to the 8901A to set it up to generate a SRQ on the proper condition(s).

<table>
<thead>
<tr>
<th>Command</th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable SRQ</td>
<td>64</td>
<td>(40)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of LAM</td>
<td>65</td>
<td>(41)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of Q=0</td>
<td>66</td>
<td>(42)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of LAM or Q=0</td>
<td>67</td>
<td>(43)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of X=0</td>
<td>68</td>
<td>(44)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of LAM or X=0</td>
<td>69</td>
<td>(45)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of Q=0 or X=0</td>
<td>70</td>
<td>(46)</td>
</tr>
<tr>
<td>Enable SRQ on occurrence of LAM, Q=0 or X=0</td>
<td>71</td>
<td>(47)</td>
</tr>
</tbody>
</table>

NOTE: All of these commands de-assert INHIBIT.

Single byte commands - values specified in decimal with hex value given in ()
The GPIB controller must perform a serial poll of all devices after receiving a service request. When the 8901A is polled, it sends up to 5 bytes of information to the GPIB controller. The first byte is a status byte which contains the current state of X and Q in bits 1 (LSB) and 2 respectively and bit 7 indicating whether or not the currently addressed 8901A was the device which requested service. If bit 7 is equal to one, the 8901A generated the request. The next four bytes indicate the state of the LAM lines. They are encoded as follows:

<table>
<thead>
<tr>
<th>Byte #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status byte, with X and Q on bits 1 and 2 respectively</td>
</tr>
<tr>
<td>2</td>
<td>LAM for slots 1 through 6 (Slot 1 LAM is least significant bit)</td>
</tr>
<tr>
<td>3</td>
<td>LAM for slots 7 through 12</td>
</tr>
<tr>
<td>4</td>
<td>LAM for slots 13 through 18</td>
</tr>
<tr>
<td>5</td>
<td>LAM for slots 19 through 23</td>
</tr>
</tbody>
</table>

A service request by the 8901A will be cleared after the controller reads the status byte. However, if the request was caused by a LAM, a service request will immediately be issued again unless SRQ on LAM is disabled in the 8901A or the LAM is cleared in the instrument(s) asserting it. It is important to note that the 8901A cannot transfer any CAMAC commands to the dataway while any service request is pending.

CAMAC COMMANDS

CAMAC commands are communicated through the CAMAC dataway, for programming and operation of other instruments in the mainframe. There are two basic types.

The C, Z, and I Commands

The 8901A can be programmed to generate CLEAR (C), INITIALIZE (Z), or INHIBIT (I) signals on the dataway when a CAMAC cycle is executed. These commands are visible to all instruments in the mainframe. C, Z, and I are all single byte commands; please see the section "Programming the 8901A and other CAMAC Modules" for programming instructions. CAMAC modules may have different responses to these commands; please check the user manual for information specific to your modules. The "Introduction to CAMAC" Application Note (AN-33 included at the end of this manual) contains further information regarding standard use of the C, I and Z lines.

The CLEAR and INITIALIZE signals will be turned on only during the first CAMAC cycle executed after the 8901A received that command. The INHIBIT line will remain asserted until the 8901A is programmed to de-assert it. Caution - changing the INHIBIT line will affect the state of the service request response programming.
Commands to Individual Modules

The 8901A transfers Function, Subaddress, Station (or slot) number, and up to three bytes of data to the CAMAC dataway when sending a CAMAC command. These commands are often referred to as "FAN", "FNA" or "Function code" commands.

<table>
<thead>
<tr>
<th>Table 7 - Acceptable Values for FAN Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Component</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Function code</td>
</tr>
<tr>
<td>Subaddress</td>
</tr>
<tr>
<td>Station Number</td>
</tr>
<tr>
<td>Data bytes</td>
</tr>
</tbody>
</table>

PROGRAMMING THE 8901A AND OTHER CAMAC MODULES

General

The programming of the two types of commands described in the last section (SETUP COMMANDS and CAMAC COMMANDS) must be handled in slightly different manners. This section outlines the mechanics and examples necessary to upload and execute these commands.

LISTEN, TALK, UNLISTEN: GPIB Bus Actions

Proper programming of the 8901A requires an understanding of these modes. To place the 8901A into LISTEN or TALK mode, or to make it UNTALK or UNLISTEN, GPIB level commands must be executed, typically by the host computer. Please refer to the manual for your GPIB controller card for information on setting GPIB devices to be listeners, talkers, etc. Steps 1 and 3 in this section are of this type.

The C function for this operation when using NI-488 GPIB board-level commands is ibcmd. This function sends command bytes to the GPIB controller. The bytes contain information about the devices attached to the GPIB bus, and specifies through the use of device addresses if they are to be placed in TALK or LISTEN mode, or to UNTALK or UNLISTEN. These bytes are also referred to as "Interface Messages".

Here are the correct byte assignments for the "command byte" parameter used with ibcmd:

<table>
<thead>
<tr>
<th>Table 8 - Byte values of GPIB Interface Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Make 8901A LISTEN</td>
</tr>
<tr>
<td>Make 8901A TALK</td>
</tr>
<tr>
<td>Make Computer a GPIB LISTENER</td>
</tr>
<tr>
<td>Make Computer a GPIB TALKER</td>
</tr>
<tr>
<td>Send UNLISTEN</td>
</tr>
<tr>
<td>Send UNTALK</td>
</tr>
</tbody>
</table>
A typical assignment of the 8901A address (set via the front panel dip switches) is simply "1". Thus, the 8901A LISTEN and 8901A TALK bytes would become 33 and 64 respectively.

Note: All of the bytes above happen to have ASCII text equivalents, e.g., decimal 32 is the space character; decimal 65 is the letter "Capital A".

ibcmd can send multiple bytes, so it is convenient to make the 8901A LISTEN in at the same time as making the Computer a TALKER.

The 8901A must be placed in LISTEN mode to receive any information. Placing the 8901A into TALK mode will execute a CAMAC cycle.

Lastly, and importantly, the UNLISTEN action is used to latch data in the 8901A without executing a CAMAC cycle. This is necessary for the execution of 8901A SETUP COMMANDS.

Uploading Command Byte(s) to the 8901A

Step 2 of the examples below require the transfer of appropriate data to the 8901A. In the NI-488 board level command language, this is implemented using the ibwrt function. This function sends a stream of data to the 8901A. This data, of up to 6 bytes, is typically packed into either an array of characters (C programming language) or is packed into a String variable (Basic programming languages). The conversion of an INTEGER decimal value into a character is often accomplished using the chr function.

See "Procedures for Commands Sent to Individual Modules" below for more instruction.

Procedure for 8901A Setup Commands

The following steps should be used to upload and execute 8901A setup commands. All of these commands are defined by a single byte, and consist of the Transfer Mode and SRQ commands listed in Tables 3 and 4.

1. Place 8901A in LISTEN mode (this step will cause the LISTEN lamp to illuminate).
2. Upload command byte (ex. Decimal 106 to set the 8901A in 16 bit Normal Transfer mode).
3. Make 8901A UNLISTEN (turns off LISTEN lamp and latches the command byte).

Procedure for C, Z, and I Commands

The following steps should be used to upload and execute the C, Z, and I commands.

Note: When uploading the INHIBIT command in step 2 above, the INHIBIT lamp will illuminate. The CAMAC crate, however, does not receive this information until step 3 is completed.
1. Place 8901A in LISTEN mode (this step will cause the LISTEN lamp to illuminate).
2. Upload command byte (ex. Decimal 34 to upload the CLEAR byte command).
3. Make 8901A TALK (turns off LISTEN lamp, illuminates TALK light, executes CAMAC cycle).

Procedure for Commands Sent to Individual Modules

These commands do the work to program, initialize, readout, etc., all of your CAMAC plug-ins. These commands are often referred to as "FAN", "FNA" and "Function code" commands. The following steps should be used to upload and execute these commands:

1. Place 8901A in LISTEN mode (this step will cause the LISTEN lamp to illuminate).
2. Upload byte stream (see below for example).
3. Make 8901A TALK (turns off LISTEN lamp, illuminates TALK light, executes CAMAC cycle).

When assembling the byte stream, pack the bytes, in the following order, into a buffer.

<table>
<thead>
<tr>
<th>Byte #</th>
<th>Byte Name</th>
<th>Byte Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>Function Code Number</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Module Subaddress</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>CAMAC Station (or slot) Number</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>Low Data Byte (bits W1-W8)</td>
</tr>
<tr>
<td>5</td>
<td>D2</td>
<td>Middle Data Byte (bits W9-W16)</td>
</tr>
<tr>
<td>6</td>
<td>D3</td>
<td>High Data Byte (bits W17-W24)</td>
</tr>
</tbody>
</table>

The command loading procedure may be halted after any number of these bytes have been uploaded. This is useful when only the function or Subaddress is changing as a program executes. For example, if the user plans to send an F(25) A(0) N(5) command followed by F(2) A(0) N(5) command, only one byte of information needs to be uploaded (the F(2) data). Thus the F(2) A(0) N(5) command may be executed without uploading the A and N information immediately prior to executing the CAMAC cycle with a TALK command.
Procedure for Readout of Data into Computer

To readback data placed on the dataway be a CAMAC module (typically after an F(0) or F(2) is uploaded and executed), follow the following procedure. This is simply an extension of the last section, "Procedure for Commands to Individual Modules":

1. Place 8901A in LISTEN mode (this step will cause the LISTEN lamp to illuminate).
2. Upload byte stream (ex. F(2) A(0) command string).
3. Make 8901A TALK (turns off LISTEN lamp, illuminates TALK light, executes CAMAC cycle).
4. Issue Read command (e.g. ibrd for NI-488).

Step 4 will return data appropriate to the Transfer Mode previously programmed. (See Transfer Mode section, including Table 3.)
THEORY OF OPERATION

GENERAL

The Model 8901A is a GPIB to CAMAC interface which is composed of two circuit boards. The first board plugs into the control (rightmost) slot of the CAMAC mainframe and interfaces to the CAMAC station number (N) lines and LAM lines. This board also contains the GPIB interface circuitry. The second board provides the interface to the CAMAC Dataway. It has registers to store the CAMAC commands sent by the GPIB controller and drive the function (F), address (A), and write data (W) lines of the Dataway during a CAMAC cycle. It also has the circuit to generate the CAMAC cycle timing and latch the read data (R) lines.

The 8901A circuitry can be broken down into logical subsections as shown in the block diagram. The operation of each of these subsections is discussed here.

GPIB COMMAND DECODER

At the heart of the 8901A is the GPIB command decoder. When a command is put on the GPIB bus it must be interpreted by the 8901A and a decision must be made as to how (if at all) to respond to it. The 8901A will respond to any of the following GPIB commands: interface clear (IFC), serial poll enable (SPE), serial poll disable (SPD), my TALK address (MTA), my LISTEN address (MLA), Unlisten (UNL), and Untalk (UNT).

The 8901A has four basic states: Idle, TALK mode, LISTEN mode, Serial poll mode. These states are entered and exited as a result of one of the above GPIB commands. The following table lists each of the commands and describes its effect on the 8901A's state.

8901A Functional Block Diagram
IFC: Resets all registers in the 8901A and places it in the Idle state regardless of its current state.

SPE: Causes the 8901A to enter Serial Poll mode.

SPD: If the 8901A is in Serial Poll mode, this command returns it to the Idle state. It also clears a pending service request (SRQ).

MTA: If in Serial Poll mode, the 8901A will output its SRQ status upon receiving its TALK address. If not in Serial Poll mode, receipt of MTA will cause a CAMAC cycle to be executed and TALK mode to be entered.

UNT: Takes the 8901A out of TALK mode if it is active MLA - Causes the 8901A to enter LISTEN mode so that it may accept CAMAC or setup commands.

UNL: Places the 8901A into the Idle state if currently in LISTEN mode.

ACCEPTOR HANDSHAKE

The GPIB protocol provides a handshake for all data transfers. When a GPIB command is sent or the 8901A is in LISTEN mode, the 8901A must indicate that it is ready to receive a transfer by asserting the RFD line. The GPIB controller must then assert DAV when valid data is on the bus. The 8901A can then read in the data. It then asserts the DAC line to say the transfer is complete.

LISTEN MODE

Bits 6 and 7 of the first byte the 8901A receives from the GPIB Talker after entering LISTEN mode is used to determine whether the byte is a command for the 8901A itself, a "global" CAMAC command or a CAMAC command for a specific module. Bits 1-5 are then latched in the appropriate registers. If it is a CAMAC F command for a particular instrument, a sequencer is used to latch additional bytes in the following order: A, N, W1-8, W9-16, W10-24.

GLOBAL CAMAC COMMANDS

There are three global CAMAC commands: C, Z, and I. For each of these commands there is a corresponding line on the CAMAC Dataway which is driven by the 8901A whenever a CAMAC cycle is executed. The command is asserted if its latched value is a 1. At the end of the CAMAC cycle the C and Z latch is reset to zero.

F, A, N CAMAC COMMANDS

As described above, the values for F, A, N, and the Write data are latched when the information is sent from the GPIB controller. When a CAMAC cycle is executed, all of these lines are driven for the entire length of the cycle (while Busy is asserted). The latched values will not change until they are overwritten by a new command from the GPIB controller.

TRANSFER MODE

The commands for the 8901A determine how many bytes are to be read back, whether a new CAMAC cycle should be executed when data is read out (block mode), and what conditions (if any) should cause SRQ to be asserted by the 8901A. The latches for this information are cleared if an IFC is sent. The block transfer enable flip flop also is cleared when a Q = 0 is read in.
SERIAL POLL MODE

Serial poll is used by the GPIB controller to determine which device asserted SRQ. Upon decoding the serial poll enable command, the SPAS flip flop is set true, putting the 8901A in serial poll mode. When the controller then addresses the 8901A to TALK, the serial poll status bytes are sent instead of data and CAMAC cycles are inhibited. Bit 7 of the status bytes indicates the state of the SRQ line while bits 1-6 are used for data. The first byte contains X and Q, while the next 4 bytes contain the LAM status (six slots/byte) starting with slot 1. The SRQ is cleared when all of the status is read out or when the 8901A receives a serial poll disable command.

TALK MODE

When the 8901A is addressed to TALK (and serial poll mode is not active) two things occur. First, the 8901A enters the Talker active state. This causes the direction of the GPIB buffers to be reversed, since the 8901A must now drive the GPIB bus and it must disable the acceptor handshake circuit and enable the source handshake circuit. Secondly, the 8901A starts the execution of a CAMAC cycle. Upon completion of the cycle the appropriate number of data bytes are sent to the GPIB Listener followed by the X and Q response byte which is sent with the EOI signal asserted.

SOURCE HANDSHAKE

Since the 8901A is in TALK mode, the GPIB handshaking protocol reverses. That is, the 8901A is now the one to indicate when data is valid. Three conditions must be met before it can assert DAV. First, it must be in TALK mode and ATN must be set false by the GPIB controller. Also it must wait for the GPIB controller (or Listener) to assert RFD. The last condition is that the CAMAC data must be latched into the 8901A during the CAMAC cycle. When all of these conditions have been met, the 8901A waits an additional 200 nsec before asserting DAV to allow time for the data to become stable on the GPIB bus. When the listening device asserts DAC, DAV is cleared and a sequencer is clocked to output the next byte. This byte may be another data byte, or a status byte. If in block mode the status byte is suppressed, and a new CAMAC cycle is initiated instead.

CAMAC CYCLE TIMING

The CAMAC cycle starts when the 8901A is addressed to TALK or, if it is in block mode transfer, when the last data byte is read out. The 8901A asserts the Busy line and enables the F,A,N,W,C,Z and I drivers. Approximately 500 nsec later, S1 is asserted for 250 nsec. At the end of S1, all 24 bits of the CAMAC data lines, X, and Q are latched in the 8901A. S2 is asserted 125 nsec later for 250 nsec. The cycle is terminated 125 nsec after S2 goes away, Busy is cleared and all drivers are disabled.

READ DATA

The sequencer described above determines which data byte is to read out. The order of the first two bytes may be reversed by side-panel jumpers. The data is latched in the 8901A on every CAMAC cycle and generally read out immediately after the cycle completes. However, a special command (F(O), A(O), N(24)) is provided to allow readout of the latched data (the CAMAC cycle is inhibited) at a later time.

X AND Q RESPONSES

The X and Q responses are latched in the 8901A during the CAMAC cycle and read out in the response byte. They are also used in the generation of SRQs and termination of block mode transfers.
LAM LINES

The LAM lines are used by the SRQ generation circuit and can be read by the GPIB controller when it’s conducting a serial poll.

SRQ GENERATION

A service request (SRQ) may be generated (depending on how the 8901A is programmed) on any of the following conditions: a LAM is set by one of the CAMAC instruments, or a $X = 0$ or $Q = 0$ response is detected during the execution of a CAMAC cycle. When a service request is pending, CAMAC cycles are inhibited until a serial poll is performed and the SRQ cleared. However, if the SRQ was caused by a LAM, unless the LAM is cleared or the 8901A is disabled to generate SRQs on LAM before the serial poll is taken, another SRQ will be issued immediately.